Copied to
clipboard

G = C4220D14order 448 = 26·7

20th semidirect product of C42 and D14 acting via D14/C7=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4220D14, C14.1262+ 1+4, (C2×Q8)⋊8D14, (C4×D28)⋊45C2, (C4×C28)⋊24C22, C22⋊C434D14, C4.4D412D7, C422D78C2, C23⋊D1424C2, D14⋊D442C2, C22⋊D2825C2, D14⋊C469C22, D143Q830C2, D14.8(C4○D4), (C2×D4).110D14, C4⋊Dic741C22, (Q8×C14)⋊14C22, Dic74D431C2, Dic7⋊D434C2, D14.D443C2, C28.23D422C2, (C2×C14).222C24, (C2×C28).631C23, Dic7⋊C436C22, C78(C22.32C24), (C4×Dic7)⋊36C22, C2.50(D48D14), C2.75(D46D14), C23.44(C22×D7), (D4×C14).210C22, (C2×D28).224C22, C22.D2825C2, C23.D1439C2, (C22×C14).52C23, (C23×D7).65C22, (C22×D7).96C23, C22.243(C23×D7), C23.D7.56C22, (C2×Dic7).254C23, (C22×Dic7)⋊27C22, C2.78(D7×C4○D4), (C2×C4×D7)⋊52C22, (D7×C22⋊C4)⋊18C2, C14.189(C2×C4○D4), (C7×C4.4D4)⋊14C2, (C2×C7⋊D4)⋊24C22, (C7×C22⋊C4)⋊30C22, (C2×C4).197(C22×D7), SmallGroup(448,1131)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C4220D14
C1C7C14C2×C14C22×D7C23×D7D7×C22⋊C4 — C4220D14
C7C2×C14 — C4220D14
C1C22C4.4D4

Generators and relations for C4220D14
 G = < a,b,c,d | a4=b4=c14=d2=1, ab=ba, cac-1=dad=ab2, cbc-1=a2b, dbd=a2b-1, dcd=c-1 >

Subgroups: 1388 in 250 conjugacy classes, 93 normal (91 characteristic)
C1, C2, C2, C4, C22, C22, C7, C2×C4, C2×C4, D4, Q8, C23, C23, D7, C14, C14, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C2×Q8, C24, Dic7, C28, D14, D14, C2×C14, C2×C14, C2×C22⋊C4, C4×D4, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C4.4D4, C422C2, C4×D7, D28, C2×Dic7, C2×Dic7, C7⋊D4, C2×C28, C7×D4, C7×Q8, C22×D7, C22×D7, C22×C14, C22.32C24, C4×Dic7, Dic7⋊C4, C4⋊Dic7, D14⋊C4, C23.D7, C4×C28, C7×C22⋊C4, C2×C4×D7, C2×D28, C22×Dic7, C2×C7⋊D4, D4×C14, Q8×C14, C23×D7, C4×D28, C422D7, C23.D14, D7×C22⋊C4, Dic74D4, C22⋊D28, D14.D4, D14⋊D4, C22.D28, C23⋊D14, Dic7⋊D4, D143Q8, C28.23D4, C7×C4.4D4, C4220D14
Quotients: C1, C2, C22, C23, D7, C4○D4, C24, D14, C2×C4○D4, 2+ 1+4, C22×D7, C22.32C24, C23×D7, D46D14, D7×C4○D4, D48D14, C4220D14

Smallest permutation representation of C4220D14
On 112 points
Generators in S112
(1 65 12 94)(2 59 13 88)(3 67 14 96)(4 61 8 90)(5 69 9 98)(6 63 10 92)(7 57 11 86)(15 70 24 85)(16 64 25 93)(17 58 26 87)(18 66 27 95)(19 60 28 89)(20 68 22 97)(21 62 23 91)(29 100 50 107)(30 80 51 73)(31 102 52 109)(32 82 53 75)(33 104 54 111)(34 84 55 77)(35 106 56 99)(36 72 43 79)(37 108 44 101)(38 74 45 81)(39 110 46 103)(40 76 47 83)(41 112 48 105)(42 78 49 71)
(1 108 17 73)(2 102 18 81)(3 110 19 75)(4 104 20 83)(5 112 21 77)(6 106 15 71)(7 100 16 79)(8 111 22 76)(9 105 23 84)(10 99 24 78)(11 107 25 72)(12 101 26 80)(13 109 27 74)(14 103 28 82)(29 93 43 86)(30 65 44 58)(31 95 45 88)(32 67 46 60)(33 97 47 90)(34 69 48 62)(35 85 49 92)(36 57 50 64)(37 87 51 94)(38 59 52 66)(39 89 53 96)(40 61 54 68)(41 91 55 98)(42 63 56 70)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 11)(2 10)(3 9)(4 8)(5 14)(6 13)(7 12)(15 27)(16 26)(17 25)(18 24)(19 23)(20 22)(21 28)(29 37)(30 36)(31 35)(32 34)(38 42)(39 41)(43 51)(44 50)(45 49)(46 48)(52 56)(53 55)(57 87)(58 86)(59 85)(60 98)(61 97)(62 96)(63 95)(64 94)(65 93)(66 92)(67 91)(68 90)(69 89)(70 88)(71 102)(72 101)(73 100)(74 99)(75 112)(76 111)(77 110)(78 109)(79 108)(80 107)(81 106)(82 105)(83 104)(84 103)

G:=sub<Sym(112)| (1,65,12,94)(2,59,13,88)(3,67,14,96)(4,61,8,90)(5,69,9,98)(6,63,10,92)(7,57,11,86)(15,70,24,85)(16,64,25,93)(17,58,26,87)(18,66,27,95)(19,60,28,89)(20,68,22,97)(21,62,23,91)(29,100,50,107)(30,80,51,73)(31,102,52,109)(32,82,53,75)(33,104,54,111)(34,84,55,77)(35,106,56,99)(36,72,43,79)(37,108,44,101)(38,74,45,81)(39,110,46,103)(40,76,47,83)(41,112,48,105)(42,78,49,71), (1,108,17,73)(2,102,18,81)(3,110,19,75)(4,104,20,83)(5,112,21,77)(6,106,15,71)(7,100,16,79)(8,111,22,76)(9,105,23,84)(10,99,24,78)(11,107,25,72)(12,101,26,80)(13,109,27,74)(14,103,28,82)(29,93,43,86)(30,65,44,58)(31,95,45,88)(32,67,46,60)(33,97,47,90)(34,69,48,62)(35,85,49,92)(36,57,50,64)(37,87,51,94)(38,59,52,66)(39,89,53,96)(40,61,54,68)(41,91,55,98)(42,63,56,70), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,11)(2,10)(3,9)(4,8)(5,14)(6,13)(7,12)(15,27)(16,26)(17,25)(18,24)(19,23)(20,22)(21,28)(29,37)(30,36)(31,35)(32,34)(38,42)(39,41)(43,51)(44,50)(45,49)(46,48)(52,56)(53,55)(57,87)(58,86)(59,85)(60,98)(61,97)(62,96)(63,95)(64,94)(65,93)(66,92)(67,91)(68,90)(69,89)(70,88)(71,102)(72,101)(73,100)(74,99)(75,112)(76,111)(77,110)(78,109)(79,108)(80,107)(81,106)(82,105)(83,104)(84,103)>;

G:=Group( (1,65,12,94)(2,59,13,88)(3,67,14,96)(4,61,8,90)(5,69,9,98)(6,63,10,92)(7,57,11,86)(15,70,24,85)(16,64,25,93)(17,58,26,87)(18,66,27,95)(19,60,28,89)(20,68,22,97)(21,62,23,91)(29,100,50,107)(30,80,51,73)(31,102,52,109)(32,82,53,75)(33,104,54,111)(34,84,55,77)(35,106,56,99)(36,72,43,79)(37,108,44,101)(38,74,45,81)(39,110,46,103)(40,76,47,83)(41,112,48,105)(42,78,49,71), (1,108,17,73)(2,102,18,81)(3,110,19,75)(4,104,20,83)(5,112,21,77)(6,106,15,71)(7,100,16,79)(8,111,22,76)(9,105,23,84)(10,99,24,78)(11,107,25,72)(12,101,26,80)(13,109,27,74)(14,103,28,82)(29,93,43,86)(30,65,44,58)(31,95,45,88)(32,67,46,60)(33,97,47,90)(34,69,48,62)(35,85,49,92)(36,57,50,64)(37,87,51,94)(38,59,52,66)(39,89,53,96)(40,61,54,68)(41,91,55,98)(42,63,56,70), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,11)(2,10)(3,9)(4,8)(5,14)(6,13)(7,12)(15,27)(16,26)(17,25)(18,24)(19,23)(20,22)(21,28)(29,37)(30,36)(31,35)(32,34)(38,42)(39,41)(43,51)(44,50)(45,49)(46,48)(52,56)(53,55)(57,87)(58,86)(59,85)(60,98)(61,97)(62,96)(63,95)(64,94)(65,93)(66,92)(67,91)(68,90)(69,89)(70,88)(71,102)(72,101)(73,100)(74,99)(75,112)(76,111)(77,110)(78,109)(79,108)(80,107)(81,106)(82,105)(83,104)(84,103) );

G=PermutationGroup([[(1,65,12,94),(2,59,13,88),(3,67,14,96),(4,61,8,90),(5,69,9,98),(6,63,10,92),(7,57,11,86),(15,70,24,85),(16,64,25,93),(17,58,26,87),(18,66,27,95),(19,60,28,89),(20,68,22,97),(21,62,23,91),(29,100,50,107),(30,80,51,73),(31,102,52,109),(32,82,53,75),(33,104,54,111),(34,84,55,77),(35,106,56,99),(36,72,43,79),(37,108,44,101),(38,74,45,81),(39,110,46,103),(40,76,47,83),(41,112,48,105),(42,78,49,71)], [(1,108,17,73),(2,102,18,81),(3,110,19,75),(4,104,20,83),(5,112,21,77),(6,106,15,71),(7,100,16,79),(8,111,22,76),(9,105,23,84),(10,99,24,78),(11,107,25,72),(12,101,26,80),(13,109,27,74),(14,103,28,82),(29,93,43,86),(30,65,44,58),(31,95,45,88),(32,67,46,60),(33,97,47,90),(34,69,48,62),(35,85,49,92),(36,57,50,64),(37,87,51,94),(38,59,52,66),(39,89,53,96),(40,61,54,68),(41,91,55,98),(42,63,56,70)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,11),(2,10),(3,9),(4,8),(5,14),(6,13),(7,12),(15,27),(16,26),(17,25),(18,24),(19,23),(20,22),(21,28),(29,37),(30,36),(31,35),(32,34),(38,42),(39,41),(43,51),(44,50),(45,49),(46,48),(52,56),(53,55),(57,87),(58,86),(59,85),(60,98),(61,97),(62,96),(63,95),(64,94),(65,93),(66,92),(67,91),(68,90),(69,89),(70,88),(71,102),(72,101),(73,100),(74,99),(75,112),(76,111),(77,110),(78,109),(79,108),(80,107),(81,106),(82,105),(83,104),(84,103)]])

64 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G4H4I4J4K4L7A7B7C14A···14I14J···14O28A···28R28S···28X
order122222222244444444444477714···1414···1428···2828···28
size111144141428282244441414282828282222···28···84···48···8

64 irreducible representations

dim1111111111111112222224444
type++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2C2C2C2D7C4○D4D14D14D14D142+ 1+4D46D14D7×C4○D4D48D14
kernelC4220D14C4×D28C422D7C23.D14D7×C22⋊C4Dic74D4C22⋊D28D14.D4D14⋊D4C22.D28C23⋊D14Dic7⋊D4D143Q8C28.23D4C7×C4.4D4C4.4D4D14C42C22⋊C4C2×D4C2×Q8C14C2C2C2
# reps11111111211111134312332666

Matrix representation of C4220D14 in GL8(𝔽29)

170000000
017000000
001700000
000170000
0000170232
0000017252
0000281120
0000273012
,
100140000
011540000
002800000
000280000
000021800
0000112700
0000001318
0000002616
,
2021000000
1627000000
213880000
22262130000
0000212100
000082600
000018208
000016261811
,
2626000000
223000000
82621210000
17172680000
0000212100
000026800
0000218188
000026161411

G:=sub<GL(8,GF(29))| [17,0,0,0,0,0,0,0,0,17,0,0,0,0,0,0,0,0,17,0,0,0,0,0,0,0,0,17,0,0,0,0,0,0,0,0,17,0,28,27,0,0,0,0,0,17,1,3,0,0,0,0,23,25,12,0,0,0,0,0,2,2,0,12],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,15,28,0,0,0,0,0,14,4,0,28,0,0,0,0,0,0,0,0,2,11,0,0,0,0,0,0,18,27,0,0,0,0,0,0,0,0,13,26,0,0,0,0,0,0,18,16],[20,16,21,22,0,0,0,0,21,27,3,26,0,0,0,0,0,0,8,21,0,0,0,0,0,0,8,3,0,0,0,0,0,0,0,0,21,8,18,16,0,0,0,0,21,26,2,26,0,0,0,0,0,0,0,18,0,0,0,0,0,0,8,11],[26,22,8,17,0,0,0,0,26,3,26,17,0,0,0,0,0,0,21,26,0,0,0,0,0,0,21,8,0,0,0,0,0,0,0,0,21,26,2,26,0,0,0,0,21,8,18,16,0,0,0,0,0,0,18,14,0,0,0,0,0,0,8,11] >;

C4220D14 in GAP, Magma, Sage, TeX

C_4^2\rtimes_{20}D_{14}
% in TeX

G:=Group("C4^2:20D14");
// GroupNames label

G:=SmallGroup(448,1131);
// by ID

G=gap.SmallGroup(448,1131);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,219,184,675,570,80,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^14=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=a*b^2,c*b*c^-1=a^2*b,d*b*d=a^2*b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽